Adenoviral overexpression of interleukin-1 receptor antagonist protein increases beta-cell replication in rat pancreatic islets.
نویسندگان
چکیده
The naturally occurring inhibitor of interleukin-1 (IL-1) action, interleukin-1 receptor antagonist protein (IRAP), binds to the type 1 IL-1 receptor but does not initiate IL-1 signal transduction. In this study, we have determined the effects of IL-1beta and IRAP overexpression on adult beta-cell replication and viability. IL-1beta reduced dramatically beta-cell replication in adult rat islets both at 5.5 mM (control: 0.29+/-0.04%; IL-1beta: 0.02+/-0.02%, P<0.05) and 22.2 mM glucose (control: 0.84+/-0.2%; IL-1beta: 0.05+/-0.05%, P<0.05). This effect was completely prevented in islets overexpressing IRAP after adenoviral gene transfer at 5.5 mM (Ad-IL-1Ra+IL-1beta: 0.84+/-0.1%, P<0.05) and 22.2 mM glucose (Ad-IL-1Ra+IL-1beta: 1.22+/-0.2%, P<0.05). Moreover, overexpression of IRAP increased glucose-stimulated beta-cell replication in the absence of IL-1beta exposure (Ad-IL-1Ra: 1.59+/-0.5%, P<0.05). beta-Cell death (TUNEL technique) was increased in IL-1beta-exposed islets but not in Ad-IL-1Ra-infected islets (control: 0.82+/-0.2%; control+IL-1beta: 1.77+/-0.2; IRAP: 0.61+/-0.2%; IRAP+IL-1beta: 0.86+/-0.1%, P<0.05). Comparable results were obtained by flow cytometry. To determine the effect of IRAP overexpression on beta-cell replication in vivo, Ad-IL-1Ra-transduced islets were transplanted into streptozotocin diabetic rats. beta-Cell replication was significantly increased in IRAP-overexpressing islet grafts (0.98+/-0.3%, P<0.05) compared to normal pancreas (0.35+/-0.02%), but not in control islet grafts (0.50+/-0.1%). This study shows that in addition to the effects of IL-1beta on beta-cell viability, this cytokine exerts a deleterious action on beta-cell replication, which can be prevented by IRAP overexpression, and provides support for the potential use of IRAP as a therapeutic tool.
منابع مشابه
Adenoviral overexpression of the glutamylcysteine ligase catalytic subunit protects pancreatic islets against oxidative stress.
The catalytic subunit of glutamylcysteine ligase (GCLC) primarily regulates de novo synthesis of glutathione (GSH) in mammalian cells and is central to the antioxidant capacity of the cell. However, GCLC expression in pancreatic islets has not been previously examined. We designed experiments to ascertain whether GCLC is normally expressed in islets and whether it is up-regulated by interleukin...
متن کاملAdenoviral-induced islet cell cytotoxicity is not counteracted by Bcl-2 overexpression.
BACKGROUND The ability to transfer immunoregulatory, cytoprotective, or anti-apoptotic genes into pancreatic islet cells may allow enhanced resistance against the autoimmune destruction of these cells in type 1 diabetes. We describe here an inducible transduction system for expression of the anti-apoptotic bcl-2 gene in insulin-producing cells as a potential tool for protecting against beta-cel...
متن کاملSalvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملPPAR-γ Activation Increases Insulin Secretion through the Up-regulation of the Free Fatty Acid Receptor GPR40 in Pancreatic β-Cells
BACKGROUND It has been reported that peroxisome proliferator-activated receptor (PPAR)-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ) and/or ade...
متن کاملOverexpression of SIRT1 Protects Pancreatic β-Cells Against Cytokine Toxicity by Suppressing the Nuclear Factor-κB Signaling Pathway
OBJECTIVE SIRT1, a class III histone/protein deacetylase, is known to interfere with the nuclear factor-kappaB (NF-kappaB) signaling pathway and thereby has an anti-inflammatory function. Because of the central role of NF-kappaB in cytokine-mediated pancreatic beta-cell damage, we postulated that SIRT1 might work in pancreatic beta-cell damage models. RESEARCH DESIGN AND METHODS RINm5F (RIN) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene therapy
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2005